Задержать COVID-19. Все про фильтрацию воздуха на случай пандемии

Задержать COVID-19. Все про фильтрацию воздуха на случай пандемии
По материалам из телеграм-канала LAB66 и присоединенного к нему чата.

Это время для фактов, а не для страха. Это время для науки, а не слухов. Это время солидарности, а не охоты на ведьм…
директор ВОЗ Tedros Adhanom Ghebreyesus про эпидемию COVID-19
Прошло немного времени с момента публикации моей статьи про респираторную защиту во время эпидемии. За это время, отчасти благодаря активному обсуждению в «приканальном» чате выработалась некоторая система, которой бы я хотел поделится и с читателями хабра. Вынудило меня написать эту статью то, что из-за коронавируса поднялся нездоровый хайп, на волне которого на поверхность начала всплывать совсем не та информация, которая всплывать должна была бы (равно как и внезапно подскочили до х40 раз цены на респираторы, притом все без разбора). Так что нужно расставить точки над i. Под катом читаем про подбор правильного респиратора, про сборку кастомных фильтров и стерилизацию зараженных средств защиты. Ответы на вопросы.

Настоятельно рекомендую «в закладки». Буду рад любому посильному распространению статьи.



Вы даже не представляете, наверно, насколько важную работу сейчас делаете (хотя, скорее всего представляете, что это реальное спасение реальных жизней). Вот сидит человек с семьёй почти посредине страшной и никому неизвестной эпидемии. А в магазинах и аптеках ни хрена нормальной защиты уже нет. Человек бредёт в интернет-магазин, а там тоже уже ничего нет. И тут, вот он вы! И всё! И уже мы можем сделать что-то сами! И обеспечить не только семью, но и всех знакомых! А ещё и научить этому тайцев, с которыми рядом живём. И вот нам всем стало спокойнее и защищённее. Это дорогого стоит!


Читаешь вот такие сообщения, и понимаешь что писать нужно. Что ж, начинаем очередной лонгрид. В первой статье было упомянуто, что лучшей защитой от аэрозолей обладают «респираторы типа FFP3/P3/N99» по различным классификациям. Притом все рассказы продавцов, что вот дескать «этот противопылевой он от аэрозоля не защитит», а «вот этот противоаэрозольный — защитит» по моему мнению не стоят и выеденного яйца и сразу выдают людей без малейшего понятия в области коллоидной химии. Потому что по определению аэрозоль — это дисперсная система, состоящая из взвешенных в воздухе (дисперсионной среде), мелких частиц (дисперсной фазы). Притом практически нигде не разделяется тип дисперсной фазы (твердый/жидкий). Мелкодисперсная пыль в воздухе и микрокапельки, образующиеся при чихании, все это аэрозоль (часто даже размерность близка). Поэтому и эффективность задерживания дисперсной фазы респираторами будет примерно одинакова. Рассказы про промышленные аэрозоли и дымы достойны отдельной книги по коллоидной химии, а вот на биологических аэрозолях я, пожалуй, остановлюсь подробнее.

Биологические аэрозоли

Биологические аэрозоли — это аэрозоли, частицы которых несут на себе жизнеспособные микроорганизмы или токсины. Они возникают в помещениях во время каждого чихания, фыркания животных, а также осуществления различных технологических процессов: кормления животных, ухода за помещениями, в результате испарения и высыхания жидкости и попадания с пылью в воздух экскрементов больных животных и человека. В зависимости от размера частиц различаются 4 фазы биологического аэрозоля: крупнокапельная (диаметр частиц > 100 мкм), мелкокапельная (диаметр частиц < 100 мкм), капельно-ядерная (диаметр частиц < 1 мкм) и т.н. бактериальной пыли (частицы размером десятки и сотни нанометров).



Частицы крупнокапельной фазы находятся во взвешенном состоянии в течение нескольких секунд и быстро оседают. Дальность их рассеивания не превышает 2–3 метра. С точки зрения распространения возбудителей заболеваний, крупные капли представляют наибольшую опасность только в момент образования и в непосредственной близости от больного. Оседая на различные поверхности, они смешиваются с пылью и, подсыхая, образуют бактериальную пыль, которая при движении воздуха в помещениях многократно поднимается и оседает на поверхности, что делает ее источником постоянного повторного заражения воздушной среды.

Частицы пылевой фазы аэрозоля, размером более 50 мкм по своим кинетическим характеристикам аналогичны частицам крупно-капельной фазы, но отличаются от последних тем, что, осаждаясь на поверхностях под действием конвекционных потоков воздуха, вновь оказываются во взвешенном состоянии и способны многократно реинфицировать воздух помещения, создавая в нем предельно высокие концентрации микроорганизмов. При определенных условиях (уборке помещений, застилании постелей, высокой двигательной активности людей) количество частиц пылевого аэрозоля в воздухе может достигать 90–95 % от общего числа частиц всех фаз бактериального аэрозоля. Кстати, количество и величина частиц биологического аэрозоля, создаваемого инфекционным больным в воздухе помещения зависит от силы и частоты физиологических актов чиханья, кашля, разговора, а также интенсивности образования мокроты.

Мелкокапельная фракция частиц размером 30 и более мкм медленно оседают, формируя вместе с частицами крупнокапельной фазы бактериальную пыль. Мелкие частицы (до 10 мкм) подсыхают и превращаются в ядрышки размером 1 мкм и мельче, формируя капельно-ядерную фракцию. Эти частицы являются сложным структурным образованием, содержащим возбудителей инфекции заключенных в белковую оболочку, защищающую их от губительного действия факторов окружающей среды. Процесс испарения проходит очень быстро — для превращения мелких капель в частицы капельно-ядерной фазы требуются сотые доли секунды. Скорость оседания частиц мелко-капельной фазы размером менее 10 мкм и частиц капельно-ядерной фазы исчезающе мала, фактически, это почти стабильный аэрозоль. Поэтому не удивительно, что для длительного поддержания таких частиц во взвешенном состоянии достаточно небольшого движения воздуха (1–10 см/сек), которое практически всегда имеет место в любом помещении. Частицам мелкокапельной фракции присуща высокая способность переноситься с потоками воздуха на значительные расстояния. Частицы размером менее 10 мкм по своим кинетическим характеристикам аналогичны частицам мелкокапельной и капельно-ядерной фаз и имеют сходную с ними и эпидемиологическую характеристику. Из-за своего малого размера (1-10 мкм) такие частицы способны проникать в наиболее глубокие отделы дыхательных путей и являются одним из ключевых движущих факторов в распространении воздушно-капельных инфекций.

Величина частиц биологического аэрозоля определяет глубину их проникновения в дыхательные пути человека и, соответственно, локализацию и тяжесть течения заболевания. Частицы размером более 30 мкм оседают в основном на слизистой оболочке носа, гортани и трахеи, частицы размером 3–10 мкм – проникают в более глубокие отделы респираторного тракта – бронхиолы, а частицы размером 0,3–1 мкм в 51–82% случаев могут достигать альвеол.

Половина частиц аэрозоля диаметром менее 0,5 мкм, как правило, выдыхается обратно. Наибольшую опасность представляют высокодисперсные аэрозоли, частицы которых имеют размер до 2 мкм. Именно такие частицы проникают в глубокие отделы легких, вызывая их первичные поражения в виде пневмоний. Грубодисперсные аэрозоли, с частицами размером более 10-15 мкм в основном задерживаются на слизистой оболочке верхних дыхательных путей.

на заметку - размеры вирусов


Подытоживая можно сказать, что чем меньше размеры частиц аэрозоля, тем дольше они сохраняются в воздухе и тем глубже проникают в дыхательные пути при вдохе. Длительность нахождения аэрозоля в воздухе (его стабильность) зависит от его температуры, влажности, скорости движения, концентрации частиц, их электрического заряда и других факторов, которые активно изучаются в курсе коллоидной химии, поэтому отдельно на этом останавливаться не будем.

Фильтры для очистки воздуха от бактерий и вирусов

Для контроля за аэрозолями разработано достаточно большое количество методов. Но в применении к рядовому жителю мегаполиса — это чаще всего использование фильтрующего материала. При фильтрации аэрозолей на сетчатых фильтрах дисперсные частицы задерживаются в основном вследствие того, что их размеры больше размеров ячеек фильтрующего материала (вследствие ситового эффекта). Логично, что уменьшать размер ячеек такого импровизированного сита можно не бесконечно. Поэтому существует такая вещь как фильтры волокнистые. Если в сите задерживаются только частицы крупнее отверстий, то в волокнистой структуре — все частицы (крупные и мелкие), но с разной эффективностью. Принцип работы волокнистых фильтров основан на том, что поток воздуха с частицами проходит в промежутках между волокнами. Частицы, коснувшиеся поверхности волокна, удаляются из потока и прочно удерживаются волокном за счет межмолекулярных сил. При фильтрации монодисперсного аэрозоля каждый элементарный слой волокон улавливает одну и ту же долю поступающих на него частиц. Любой полидисперсный аэрозоль можно представить как совокупность монодисперсных фракций, каждая из которых улавливается по своему механизму. В целом, механизм фильтрации аэрозолей на волокнистых материалах — это сумма различных эффектов, среди которых кроме ситового (имеющего наименьшее значение) существенную роль играют некоторые другие (под спойлером):

Схема действия различных эффектов осаждения аэрозольных частиц в волокнистом слое
Приближение аэрозольных частиц к поверхности волокна происходит по разным механизмам: за счет диффузии, касания, инерции, электростатического притяжения. Причем в улавливании аэрозолей участвует каждое волокно.

  1. Диффузионный эффект наблюдается, когда выход частиц из потока при их сближении с волокном происходит за счет их броуновского движения (а частицы аэрозоля размером <1 мкм находятся в постоянном тепловом движении). При этом направленный диффузионный поток частиц к волокну объясняется пониженной концентрации аэрозоля вблизи последнего. Под действием этого эффекта частицы смещаются с линии тока, сталкиваются с волокном при его обтекании и осаждаются/удерживаются на поверхности. При этом чем меньше размер частиц и скорость потока, тем больше вероятность столкновения частиц с волокном. Это основной механизм фильтрации высокодисперсных аэрозолей.

  2. Инерционный эффект, заключается в том, что частица аэрозоля, двигаясь по искривляющимся вблизи волокна линиям тока, сохраняет вследствие своей инерции прямолинейное движение, смещается с линии тока, направляется к поверхности волокна и осаждается на нем. Эффективность инерционного осаждения, в отличие от диффузионного, возрастает пропорционально увеличению размера частиц (примерно во второй степени), их плотности и скорости потока. Этот механизм является преобладающим при высоких скоростях фильтрации.

  3. Гравитационный эффект, т. е. задерживание частиц на волокне вследствие их седиментации (осаждения под действием силы тяжести) в потоке. Осаждение частиц на волокна происходит в результате смещения частиц с линии тока под действием силы тяжести во время прохождения их вблизи волокна. Значение этого эффекта для средств индивидуальной защиты невелико. Оно сказывается при увеличении массы частиц и уменьшении скорости фильтрации.

  4. Эффект касания — если при огибании волокна частица находится в потоке на расстоянии, не превышающем половины ее линейного размера, то она заденет волокно и выйдет из потока. Влияние эффекта касания усиливается при увеличении размера частиц. Коэффициент захвата частиц при касании возрастает с увеличением отношения размера частиц к размеру волокна и мало зависит от скорости потока (=скорости фильтрации).

  5. Электростатический эффект. Некоторые фильтрующие материалы несут на волокнах электростатический заряд или поляризованы внешним электрическим полем. Попадая в поле этого заряда, частицы поляризуются и притягиваются к волокну. Знак заряда волокна роли не играет. Влияние электростатического эффекта усиливается с увеличением квадрата радиуса частиц (=чем больше размер частиц, тем больше поляризация), ростом электрического заряда и с уменьшением скорости потока. Заряд волокон или напряженность поля на поверхности волокон зависят от условий сообщения зарядов, срока и условий хранения фильтрующих материалов. При низких скоростях фильтрации (до 5— 10 см/сек) электростатический захват по своей величине может в несколько раз превосходить захваты по всем другим механизмам. При больших скоростях роль электростатического захвата аэрозолей невелика.



В целом, в волокнистом материале, который состоит из нескольких слоев беспорядочно расположенных волокон, перечисленные под спойлером эффекты осаждения частиц действуют с различной степенью проявления, а фильтрующие материалы характеризуются эффективностью улавливания аэрозолей и сопротивлением потока проходящего воздуха. Как правило, самые мелкие частицы, размером меньше 0,3 мкм, улавливаются преимущественно за счет диффузионного эффекта, а частицы больших размеров – преимущественно под действием механизмов касания, инерции и седиментации. Электростатический эффект осаждения проявляется в значительной степени при наличии высокозаряженных частиц и/или волокон.

Некоторые вещи проще объяснять на наглядных примерах, поэтому перейдем к конкретике. На сегодняшний день для фильтрации аэрозольных частиц подходят только волокнистые фильтры (ака HEPA или их отечественный аналог, фильтры Петрянова-Соколова, ака ФП)

про советские HEPA
В случае с фильтрацией аэрозолей хотелось бы рассказать об отечественной разработке. Считанные люди в курсе, что у нас были свои HEPA — это т.н. фильтры Петрянова-Соколова (авторская разработка советского химика Игоря Васильевича Петрянова-Соколова). В тридцатые годы прошлого столетия сотрудники лаборатории аэрозолей НИФХИ им. Л.Я. Карпова, И.В. Петрянов, Н.Д. Розенблюм и Н.А. Фукс при попытке получить монодисперсные аэрозоли из раствора нитрата целлюлозы методом электростатического распыления обнаружили, что вместо капелек формируются очень тонкие протяженные волокна, которые образуют однородные волокнистые слои (получившие в конце сороковых годов название «материалы ФП»). На протяжении десятков лет фильтрующие материалы ФП из ультратонкого перхлорвинилового волокна были единственным средством в нашей стране, обеспечивающим тонкую очистку воздуха от взвешенных субмикронных частиц. Правда так как материалы эти использовались в основном при работе с радиоактивными аэрозолями, то первые публикации в открытой печати появились к 70-м годам. Чтобы потом опять исчезнуть и быть погребенными под HEPA-аналогами.

Интересный факт, известные «чернобыльские» респираторы «Лепесток» были сделаны из ткани Петрянова, т.е. были ~ равны по своей антиаэрозольной активности сегодняшним респираторам от 3M и именно из такой ткани должны были бы быть сделаны всякие эти аптечные повязочки/масочки…

Мне даже удалось по большому блату найти те самые легендарные респираторы «Лепесток» 80-х годов. Притом найти в отличном состоянии, можно сказать «с хранения» (за что огромное спасибо Александру Н.). Нашел, пощупал, решил поделится мыслями…



Типичный респиратор такого типа представляет собой плоский круг диаметром 205 мм из трёх слоёв материала (средний — цельный кусок фильтроткани ФП). Фильтрующий материал ФП — это слой нанесенных на тканевую подложку ультратонких волокон органических полимеров, несущих стойкий электростатический заряд (ФПП — перхлорвинил, ФПС — полистирол, ФПМ — полиметилметакрилат, ФПАН — полиакрилонитрил, ФПАР — полиакрилат). В настоящее время ультратонкие волокна диаметром от сотых долей микрона до нескольких микрон могут быть получены почти из 30 полимеров

Один из недостатков респиратора «Лепесток»- это то, что он представляет собой, фактически, полуфабрикат, и для его сборки/использования нужно проявить определенную сноровку.

как собрать и запустить лепесток
Первым делом, чистыми руками вскрыть пакет. Вынуть респиратор и встряхнуть его. Вытянуть концы резинового шнура с оплеткой на 15-20 см попеременно с каждой стороны, при этом слегка прижимая двумя пальцами места у выхода концов шнура. При этом корпус приобретает форму полусферы, а сила натяжения резинового шнура равномерно распределяется на всю окружность подогнутого края фильтра (кромки обтюратора). Респиратор можно точно подогнать к любому размеру лица, регулируя длину резинового шнура внутри кромки обтюратора. Затем шнур необходимо связать прямым узлом, а концы заправить под распорку и равномерно расправить обтюратор. Респиратор надевают на лицо, начиная с подбородка, затем помещают верхний край обтюратора на переносицу и обжимают пластинку по форме носа. Связывают на затылке (выше ушей) концы лямок, не затягивая их. Руками приглаживают обтюратор по всей его окружности и коже лица. Для усиления обтюрации фильтрующий материал ФП на завернутом внутрь крае корпуса свободен от марлевого каркаса. Ткань ФП притягивается к коже лица, создавая непрерывную мягкую прокладку волокнистой структуры.

Если ощущается подсос воздуха, сильное давление на лице или респиратор спадает, его следует снять, передвинуть узел и повторить подгонку. Затем завязать ленты, не натягивая их. После окончания работы, при выходе из загрязненного помещения развязывают лямки и плавно снимают респиратор, не дотрагиваясь до его внутренней поверхности. В случае повторного применения снятый респиратор сворачивают наружной стороной внутрь и укладывают в конверт. Если респиратор намок, то его нужно заменить сухим; снятый респиратор (если пыль малотоксична или неядовита) просушивают и используют вторично.

Изначально разработчики говорили о том, что респиратор способен притягиваться к лицу за счет электростатики, но позднее этот факт был неоднократно опровергнут. Так как из-за сложности подготовки к работе «Лепесток» часто надевали неправильно, то уже в пост-советское время от такой компоновки отказались и начали выпускать респираторы типа «Алина», «купольной» системы, уже готовые к работе.


Что этот советский респиратор может нам дать сегодня? Во-первых, в случае отсутствия каких-либо импортных СИЗОД, «Лепесток» можно применять для защиты от вирусных аэрозолей, равно как и использовать ткань из оного для замены, к примеру, фильтрующих элементов. Во-вторых, из-за недостатка информации по материалам из которых сделаны зарубежные HEPA фильтры, старые публикации по фильтрам Петрянова можно использовать как руководства к дезинфекции/стерилизации. Ну и кроме того, ориентируясь на материал волокон, можно подобрать условия работы и т.п.

перечень материалов ФП - кликабельно


Например, перхлорвиниловые фильтры Петрянова устойчивы к сильным кислотам и водным растворам щелочей, но не переносят температуры выше 60 градусов Цельсия. Полиакрилонитриловые фильтры Петрянова стойки к органическим растворителям, а полиакрилатные фильтры выдерживают температуры вплоть до 270 градусов. Современные зарубежные «пользовательские» фильтры аэрозольной фильтрации так же делаются из различных материалов и обладают различной устойчивостью к внешним воздействиям. В качестве примера — противоаэрозольники от 3М:


Дополнительно, в качестве иллюстрации к озвученному выше тезису про «субмикронные частицы задерживаются за счет диффузионного эффекта, крупные частицы — за счет касания и инерции» хотелось бы привести один факт. На рисунке ниже приведены значения а (=коэффициента фильтрующего действия) для материала ФПП-25. Эксперименты проводились с помощью монодисперсных аэрозолей в диапазоне размеров 0,04 — 2 мкм и плотностью около 1 г/см3. Скорости воздушного потока составляли 0,3 — 30 см/с. Чтобы исключить влияние электростатического эффекта, материал ФПП-25 был разряжен при облучении источником 60Со.


Зависимость коэффициента фильтрующего действия материала ФПП-25 от размера частиц аэрозоля при разных скоростях фильтрации. Числа у кривых — скорость воздуха, см/c

На рисунке отчетливо различимы три области. В левой области захват аэрозолей происходит преимущественно за счет диффузионного осаждения частиц на волокнах. С уменьшением размера частиц и скорости потока а увеличивается. В правой области осаждение частиц происходит в основном за счет инерционного механизма. Эффективность тем больше, чем крупнее частицы и выше скорость потока. В промежуточной области а наименьшие. Все кривые на рисунке проходят через минимум. Здесь диффузионный и инерционный механизмы проявляются незначительно. Захват частиц определяется механизмом касания. Диапазон размеров частиц, соответствующий минимальным значениям а, характеризует наиболее проникающие частицы. На рисунке хорошо видно, что для каждой скорости он свой. При этом с увеличением скорости потока наиболее проникающими становятся все более мелкие частицы. Если для скорости 1 см/с их диаметр составляет около 0,4 мкм, то для скорости 30 см/с — около 0,15 мкм. Из представленных данных можно сделать вывод: если при некоторой скорости потока фильтр рассчитан на улавливание с определенной эффективностью наиболее проникающих частиц, то он с заведомо большей эффективностью будет задерживать как более мелкие, так и более крупные частицы.Скорости 0,3 — 10 см/с характерны для воздушных потоков в средствах индивидуальной защиты органов дыхания (СИЗОД), а более 10 см/с — присуствуют в стационарных очистных фильтрах и различных аналитических аспираторах.

Так что если допустить что ФП ≈ HEPA, то можно сказать, что механизм электростатического улавливания является важным, но отнюдь не основным. Что не удивительно, так как при длительном хранении, сжатии и прессовании, в условиях высокой влажности, под действием ионизирующих излучений заряды с фильтрующих материалов стекают. Быстрая разрядка происходит и при длительной эксплуатации заряженного волокнистого материала вследствие накопления в нем электропроводящей пыли (аэрозоли сажи (!), металлических частиц, аэрозолей солей и т.п.). Хотя электростатические заряды на гидрофобных полимерных волокнах материалов сохраняются при хранении (в закрытом состоянии) в течении длительного периода времени, во время фильтрации электростатические заряды постепенно стекают с волокон. Практически электростатический заряд волокон обеспечивает повышенную эффективность улавливания аэрозольных частиц из атмосферного воздуха в течении нескольких десятков и сотен часов. Важно то, что после разрядки материалы все равно сохраняют высокие фильтрующие свойства, обусловленные структурными характеристиками материалов. При длительной фильтрации аэрозолей с твердыми частицами происходят постепенное забивание фильтрующего слоя и осаждение вновь поступающих аэрозольных частиц на уже осажденных частицах, в результате чего эффективность не уменьшается, а сопротивление материала постепенно возрастает. При этом скорость забивания зависит от концентрации, дисперсности и природы аэрозольных частиц.

Замечание про асбест: кроме уже упомянутых HEPA- подобных материалов, фильтровать аэрозоли можно и с помощью асбеста, который по своей химической природе уже представляет ультрадисперсные волокна. Поэтому первыми волокнистыми фильтрами были именно фильтры из асбеста (т.н. ЦАК, целлюлозно-асбестовые картоны). Целлюлозно-асбестовые картоны изготовляются из специально обработанных сортов целлюлозы в смеси с ультратонкими волокнами асбеста. В отдельные виды картона добавляются шерсть, хлопок и стеклянны волокна со связующими веществами. Такие фильтрующие картоны обеспечивают достаточно высокую эффективность улавливания аэрозолей. Однако они имеют низкую эластичность, малую пылеемкость и не стойки к влаге, что ограничивает их применение в респираторной технике. Ну и кроме того, асбест и его микроволокна — имеют зафиксированный канцерогенный эффект, что и вызывало повсеместный отказ от этого материала.

Выбор респиратора

Поговорив о материалах в общем, теперь стоит остановится на продукции с их использованием. В первой статье было упомянуто, что лучшей защитой от аэрозолей обладают «все респираторы класса FFP3. У нас доступны следующие варианты:

FFP3 поделки от 3M
типы 9332+/K113P*/8132*/9153R*/9153RS*
* = cобрано в России

отечественные FFP3 потомки лепестка
Лепесток 100-2В/Лепесток ШБ-200/Алина 310/Алина 316/Алина 319/Лотос-2В/

По прошествии некоторого времени я пришел к тому, что идеальный респиратор, помимо класса FFP3/P3 (и HEPA-материала корпуса) должен обязательно иметь клапан для выдоха и (!) обтюратор (мягкий корпус из силикона или резины, который обеспечивает герметичность маски). Потому что все невероятные свойства волокнистого материала могут быть сведены на нет подсосом воздуха через щель между маской и лицом. Это было еще известно во времена первых лепестков:

… Герметизация осуществлялась приклеиванием респиратора по линии обтюрации к лицу оператора клеем БФ-6, смазкой ЦИАТИМ, детским кремом и вазелиновым маслом<...>Отношение активностей респираторов с герметизацией клеем БФ-6 и смазкой ЦИАТИМ и без герметизации изменяется, в то же время как использование вазелинового масла и детского крема существенно не изменяет защитные свойства респиратора за счет герметизации по линии обтюрации...

Так что делайте выводы, и в комплекте с обычным одноразовым респиратором держите под рукой что-то вроде клея БФ-6. А лучше сразу искать подходящий респиратор. Пару заметок в канале (ать, два) были посвящены именно этому вопросу.

И вот уж при наличии этих условий на первый план выходит такой производитель защитного снаряжения, как немецкая фирма UVEX (не очками едиными...). Респираторы этой фирмы, в отличие от ширпотреба 3M выглядят как BMW рядом с Жигулями, но… Но соответственно мало распространены и не дешевы.

подходящие FFP3 респираторы от UVEX
Складные респираторы: 3310, 5310, 5310+, 5320+
Формованные респираторы: 2310-2312, 7313, 7333, 7310-7312-7315-7320-7330




Ну и 3М достаточно слабо представлен в этой нише. Одна модель называется 8833 и фактически представляет из себя отличный вариант в классе противоаэрозольных респираторов.


К таким же ИКР-респираторам, можно отнести и модель 8835+. Он, кстати, самый симпатичный


Как напомнил мне Merllinn, существуют и другие модели с обтюратором, например респиратор SPIROTEK VS2300V, который намного дешевле 3M-cкой продукции. Возможно, это самый дешевый „идеальный антикорона-респиратор" в наших краях…


В тему к одноразовым респиратором пару тематических заметок:

как правильно надевать респиратор


отличие трехслойной повязки от респиратора
Вот сегодня я узнал, что, оказывается, есть даже такой праздник, как N95 Day, т.е. День Респиратора, ребята! :)

Праздник этот учрежден Национальным институтом охраны труда США (NIOSH) и с 2012 года отмечается 5 сентября, чтобы привлечь дополнительное внимание к важным вопросам защиты органов дыхания. Основной акцент праздника — на фильтрах ультратонкой и аэрозольной фильтрации. В общем, в общем рекомендую праздник внести в календарь всем интересующихся (в свете эпидемии это может быть весь мир).

Бонусом — сравнение обычной аптечной (=спанбонд) маски и респиратора типа N95 (сделано специально под 5 сентября 2018) :)


И в формате видео:


проверка герметичности респиратора
Раз наверное тысячу уже написал читателям „при равных ffp3 проверяйте как сидит на лице". В документе — методичка от CDC по проверке прилегания маски к лицу…

Работоспособность маски проверяется либо на выдох (с избыточным давлением) — для бесклапанных, либо на вдох (с отрицательным давлением) — для респираторов с клапаном выдоха.

Проверка выдохом: плотно надеть маску, подтянуть уплотнительные лямки, затем прижать респиратор к лицу руками, пытаясь захватить максимальную его площадь (как на картинке) и медленно выдыхаем.


Подгонка правильная, если во время выдоха под маской создается избыточное давление, без каких либо утечек по краям.

Проверка вдохом: алгоритм тот же что и при проверке избыточного давления, только после подгонки маски делаем вдох. Маска должна прилипнуть к лицу. Если наблюдается утечка в области носового фиксатора — необходимо при надетой маске пальцами провести вдоль пластинки на верхней части маски, с прижимом разглаживая ее по контуру лица.


бородатым-нет!
Как не прискорбно об этом говорить, но легкие приятные респираторчики не для суровых бородачей. Нам, ребята, остаются только не менее суровые полу- и полнолицевые маски. Притом об этом говорилось еще в инструкции к респираторам „Лепесток" в седые 60-е. Если есть наличие бакенбардов, усов, бороды — нет плотного прилегания респиратора к лицу по полосе обтюрации, а значит респиратор становится не эффективным. Есть рекомендация по этому поводу и у 3M.


Вот здесь, например, пишут, что защита (=прилегание) значительно снижается там, где есть щетина (начиная с 24 часов после бритья) и ситуация все время ухудшается, по мере роста волос на лице. Примерно то же говорит и 3М. Плотно прилегающие респираторы не могут правильно работать с волосами на лице. Бороды, усы или даже щетина мешают уплотнению. Поэтому Управление по охране труда США (OSHA) требует, чтобы работники были гладко выбриты, и запрещает наличие волос на лице в тех местах, где респиратор соприкасается с лицом. В общем, с бородой однразовый респиратор носить можно только на свой страх и риск.

про беларуских торгашей
Для тех, кому сложно конвертировать скажу что 1 доллар = 2 беларуских рубля, т.е. стоимость респираторчика вшивого, внимание, 40$


Подытоживая можно сказать, что респиратор с обтюратором конечно же удобнее чем противогазы, но найти этот самый обтюратор достаточно сложно. А учитывая то, что такие прохиндеи как в спойлере „про беларуских торгашей" есть везде, то может оказаться что гораздо выгоднее (пусть и не так красиво) будет купить полумаску. Там прекрасный силиконовый обтюратор, надежные крепления и обилие сменных картриджей.

Выбор полумаски


Если изначально я не делал особой разницы между 3M-скими масками линейки 6ххх и 7ххх, то теперь делаю. И рекомендую брать именно 7-ки (хотя 6-ки дешевле). Связано это с тем, что маски 7ххх (самая распространенная 7502 — medium размера) позволяют разобрать респиратор на составные части, а значит упрощают процесс мытья и дезинфекции.



выбор правильного размера полумаски



Кроме того, к этой маске, в случае чего, можно подключать систему принудительной подачи воздуха (S-200). Если есть деньги — можно взять полнолицевую маску, вроде 6800.


С такой маской не нужны герметичные очки, которые для полумасок и респираторов являются обязательном (=»в комплект") аксессуаром.

Выбор герметичных очков


Из того что коронавирус запросто может проникать в организм через рог
0
22:44
129
RSS
Нет комментариев. Ваш будет первым!